

NEW EXTENSIONS OF SIX-PORT THEORY AND PRACTICE

L. Kaliouby, R.G. Bosisio

École Polytechnique of Montreal

Montréal, Québec, Canada

Abstract

This paper presents new extensions of six-port theory and practice from the following three points of view: 1) theory: a new relationship between reflection coefficient and calibration constants is given, 2) calibration: a new simple explicit six-port calibration solution using three positions of a sliding short is developed, 3) design: a new six-port design for continuous Γ -plane is introduced.

Introduction

Six-port automatic network analyzers measure reflection coefficient Γ by means of four output power readings of the form: (Fig. 1).

$$\begin{aligned} P_3 &= \left| b_3 \right|^2 = \left| aA + bB \right|^2 & (1) \\ P_4 &= \left| b_4 \right|^2 = \left| aC + bD \right|^2 & (2) \\ P_5 &= \left| b_5 \right|^2 = \left| aE + bF \right|^2 & (3) \\ P_6 &= \left| b_6 \right|^2 = \left| aG + bH \right|^2 & (4) \end{aligned}$$

where a and b represent respectively the reflected and incident waves, and A, B, \dots, H are complex values function of six-port design (1,2,3).

It has been shown that if one of the power readings has to be proportional to the incident wave, that is, $P_4 = K|b|^2$ with $C=0$, then the ideal six-port junction must have $B/A, F/E, H/G$ equal in module with a phase difference of 120° (2). However, with existing standard microwave components, a 135-135-90 configuration is more easily realized (3) with $B/A=2\angle 90^\circ, F/E=2\angle 225^\circ, H/G=2\angle 315^\circ$.

Moreover, in practice, experimental measurements show that the values of A, B, \dots, H diverge from design objectives, and vary with frequency. Thus, for precise measurements of Γ , it's necessary to first calibrate the six-port, that is, to determine

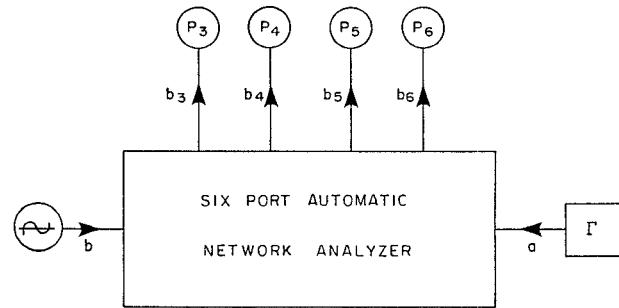


Figure 1: A six-port network analyzer measure reflection coefficient $\Gamma = a/b$ by means of four output power readings P_3, P_4, P_5, P_6 .

the values of A, B, \dots, H as a function of frequency. Afterwards, the values of Γ can be calculated using the three power ratios $P_3/P_4, P_5/P_4, P_6/P_4$ of the form.

$$\frac{P_\eta}{P_4} = \left| \frac{b_\eta}{b_4} \right|^2 = |K_\eta|^2 \left| \frac{\Gamma - q_\eta}{\Gamma - q_4} \right|^2 \quad (5)$$

with $K_3 = A/C, q_3 = -B/A$
 $K_5 = E/C, q_5 = -F/E$
 $K_6 = G/C, q_6 = -H/G$
 $q_4 = -D/C$

This paper presents new extensions of six-port theory and practice from the following three points of view:

. Six-port theory

In this paper, it is shown that the complex constants q_η and q_4 represent respectively the average value of Γ when

$$\frac{P_\eta}{P_4} \left| K_\eta \right|^2 \text{ and } \frac{P_\eta}{P_4} \left| K_\eta \right|^2.$$

The averaging is done with respect to the phase difference between signals b_η and b_4 . This property provides an attractive geometrical interpretation and gives interesting insight into the six-port calibration and measurement process.

. Six-port calibration

The calibration of six-port consists in determining eleven constants composed of four complex values: B/A , D/C , F/E , H/G and three real ones: $|A/C|^2$, $|E/C|^2$, $|G/C|^2$. Various algorithms exist for such purposes (4,6,7). However, the objective still remains to obtain the simplest solution, explicit if possible, using the minimum number of loads. In this paper, a simple explicit solution for this problem is developed using only three positions of a sliding short, with a phase difference of 120° . It is shown that, in this case, the algorithm used to calculate the four complex calibration constants can be made very similar to the calculation of Γ for an ideal 120° junction.

. Six-port design

In experimental and laboratory work, it's often required to make precise real-time or swept frequency measurements for fine tuning purposes or verification of circuit characteristics within a given bandwidth. Recently, this has been made realisable by using a six-port chart that is calculated from the calibration constants (9,10). However, with existing six-port design, it's only possible to make readings in a distorted (almost tridimensional) Γ plane. In this paper, a new six-port design is developed such that real-time or swept frequency measurements can be made in the more conventional Γ plane, using only power ratio values.

A New Relationship Between Reflection Coefficient and Calibration constants

Let's first consider a simple case where $q_\eta=1$, $q_4=j$ and $K_\eta=1$.

Figure 2 shows locus of constant module α and phase θ of b_η/b_4 in the Γ -plane.

$$\frac{b_\eta}{b_4} = \alpha e^{j\theta} = \frac{aA+bB}{aC+bD} \quad \text{in the } \Gamma\text{-plane.}$$

Figure 3 shows for a circle with $\alpha=.2, .4, .6, .8$, the x and y values of Γ as a function of θ . It is seen that the average value of x is 1, and the average value of y is 0, corresponding to the x and y coordinates of q_η . Similarly, for $\alpha<1$, the average value of Γ is $(0,1)$, that is, q_4 .

More generally speaking, it can be shown that for any value of q_η , q_4 , K_η , the relationship:

$$\begin{aligned} \Gamma_{av} &= \frac{1}{2\pi} \int_0^{2\pi} (\Gamma_x, \Gamma_y) d\theta \quad (6) \\ &= q_\eta \text{ if } \frac{P_\eta}{P_4} < |K_\eta|^2 \\ &= q_4 \text{ if } \frac{P_\eta}{P_4} > |K_\eta|^2 \end{aligned}$$

still holds.

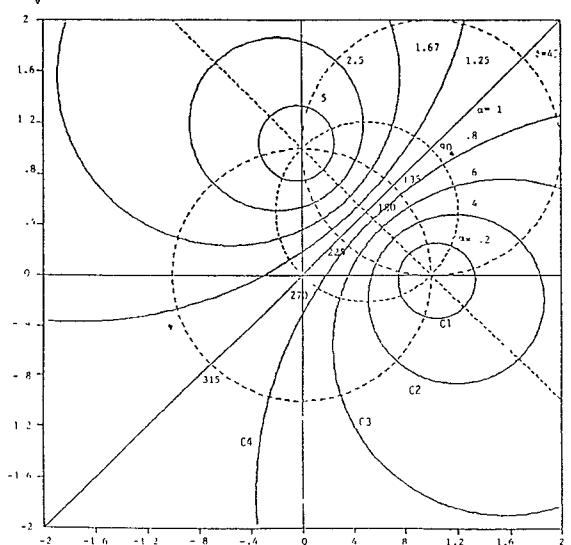


Figure 2: Locus of constant module, α , of

$$\frac{b_\eta}{b_4} = K_\eta \frac{\Gamma - q_\eta}{\Gamma - q_4}$$

and constant phase, θ , of b_η/b_4 , in the Γ plane, for $q_\eta=1$, $q_4=j$, $K_\eta=1$.

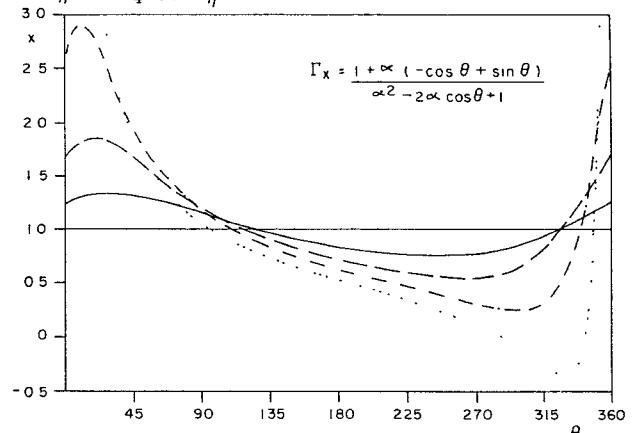
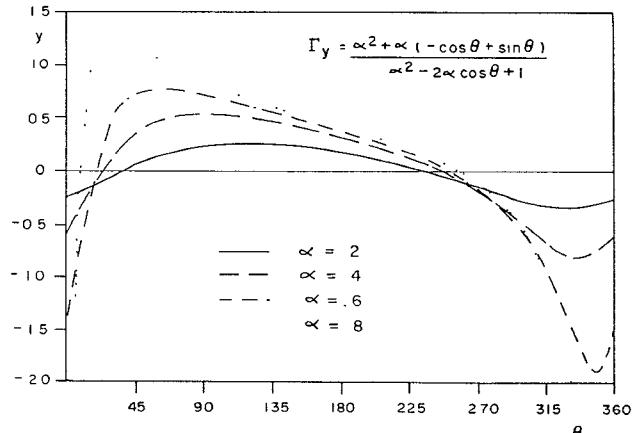


Figure 3: The x and y coordinates values of Γ , as a function of θ , for a circle with $\alpha=0.2, 0.4, 0.6, 0.8$.

A Simple Explicit Six-Port Calibration Solution Using Three Positions of a Sliding Short

Let's designate by P_{33} , P_{35} , P_{36} the power output P_3 when the load is successively three positions of a sliding short with a phase difference of 120° difference; ($\phi_3=0$, $\phi_5=120$, $\phi_6=240$) and let's designate by P_{34} the power output P_3 when the load is a matched load. P_{34} may be calculated from P_{33} , P_{35} , P_{36})

We have then

$$\frac{P_{34}}{P_{34}} = |(B/A)^{-1} + \gamma \phi \eta|^2 \quad (7)$$

The value of $(B/A)^{-1}$ can then be simply calculated as the intersection of three circles in the $(B/A)^{-1}$ plane (Fig. 4) or as

$$(B/A)^{-1} = \frac{\sum_{i=1}^4 (\alpha_i + \beta_i) P_{3i}}{\sum_{i=1}^4 \gamma_i P_{3i}} \quad (8)$$

Similar remark apply for the evaluation of F/E , H/G , D/C . It's only required afterwards to correct for the exact reference phane, by use of a fixed short or open.

The values of $|A/C|$, $|E/C|$, $|G/C|$ are finally evaluated using equation (5).

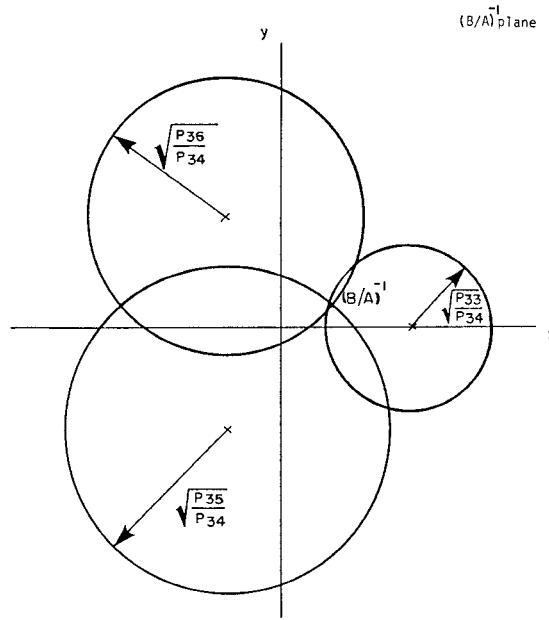


Figure 4: The four complex calibration constants can be simply calculated as the intersection of three circles, with center given by 1×0 , 1×120 , 1×240 . For example, the value of $(B/A)^{-1}$ can be calculated as the intersection, in the $(B/A)^{-1}$ plane, of three circles of radius given by $\sqrt{P_{33}/P_{34}}$, $\sqrt{P_{35}/P_{34}}$, $\sqrt{P_{36}/P_{34}}$.

A New Six-Port Design for Continuous Γ -plane Display

In order to be able to make readings in the conventional Γ -plane using only power ratio values, the mathematical objective design has to be:

$$\frac{P_3}{P_4} = \Gamma_x + \text{constant} \quad (9)$$

$$\frac{P_5}{P_4} = \Gamma_y + \text{constant} \quad (10)$$

From equation (5) this relationship implies:

$$k \left(\frac{m_2^2 + m_3^2 - 2m m_3 \cos(\varphi - \varphi_3)}{m_2^2 + m_4^2 - 2m m_4 \cos(\varphi - \varphi_4)} \right) = m \cos \varphi + \text{const.} \quad (11)$$

$$k \left(\frac{m_2^2 + m_5^2 - 2m m_5 \cos(\varphi - \varphi_5)}{m_2^2 + m_4^2 - 2m m_4 \cos(\varphi - \varphi_4)} \right) = m \sin \varphi + \text{const.} \quad (12)$$

where $\Gamma = m \times \varphi$
 $B/A = m_3 \times \varphi_3$, $F/E = m_5 \times \varphi_5$, $D/C = m_4 \times \varphi_4$

Using these equations, it can be shown that to satisfy these requirements in the region $|\Gamma| < \pi$, the optimal values of B/A , D/C , F/E are (Fig. 5).

$$-B/A = 2.5 \times 190, -D/C = 10 \times 225, -F/E = 2.5 \times 260$$

In fact, figure 6 shows that in this case, P_3/P_4 and P_5/P_4 becomes then practically linear function of Γ_x and Γ_y . Thus, the six-port chart, in the region $|\Gamma| < \pi$, becomes then practically a Γ -plane (Fig. 7).

It becomes then extremely easy for a network analyzer user to make real-time or swept frequency measurements, within a minimum familiarization time with the system.

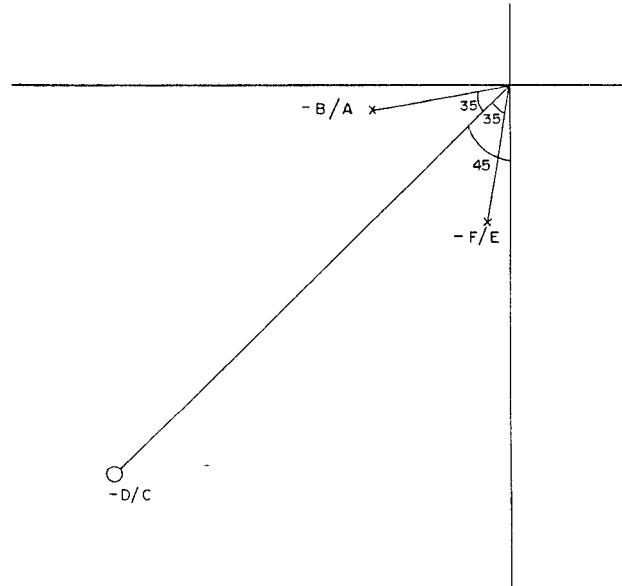


Figure 5: New six-port design with $-B/A = 1.5 \times 190$, $-D/C = 10 \times 225$, $-F/E = 2.5 \times 260$, that is, a 35-35 configuration.

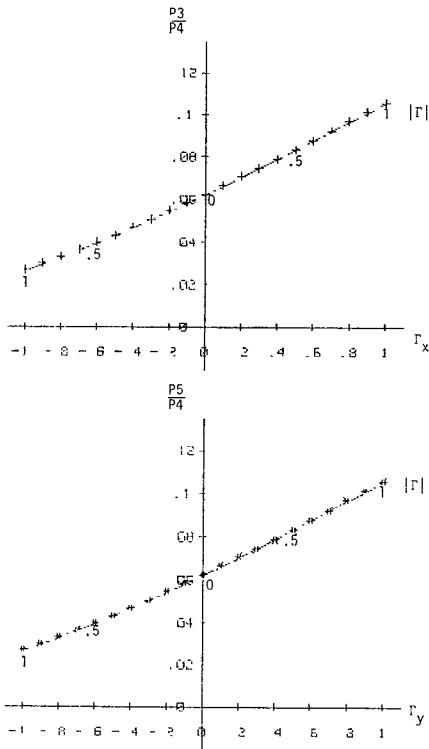


Figure 6.a): The relationship between power ratio P_3/P_4 and $|\Gamma_x|$ is practically linear in the horizontal axis, that is for $\varphi=0$ and $\varphi=180$.

Figure 6.b): The relationship between power ratio P_5/P_4 and $|\Gamma_y|$ is practically linear in the vertical axis, that is, for $\varphi=90$ and $\varphi=270$.

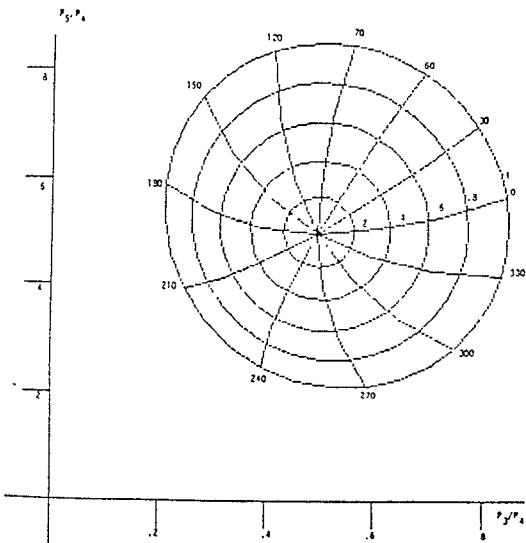


Figure 7: The six-port chart for a six-port junction characterized by $-B/A=2.5 \times 190$, $-D/C=10 \times 225$, $-F/E=2.5 \times 260$ is practically a Γ plane for $|\Gamma| < 1$.

Experimental results

An experimental set-up has been developed for the measurement of reflection coefficient using six-port concept.

The precision of calibration algorithm using three positions of a sliding short is 1% in module and 2° in phase.

The frequency where the design is the closest to the optimum is at 3.4 GHz.

Conclusion

This paper has presented new extensions of six-port theory and practice from the following three points of view: 1) theory: a new relationship between reflection coefficient and calibration constants has been given, 2) calibration: a new simple explicit six-port calibration solution using three positions of a sliding short has been developed 3) design: a new six-port design for continuous Γ -plane display has been introduced.

References

- (1) G.F. Engen, C.A. Hoer, "Applications of an Arbitrary 6-port Junction to Power Measurement Problems", IEEE Trans. Instrum. Measurement, vol. IM-21, No 4, pp. 470-474 (1972).
- (2) G.F. Engen, "The Six-Port Reflectometer: An Alternative Network Analyzer", IEEE Microwave Theory and Tech., vol. MTT-25, No 12, pp. 1075-1083 (1977).
- (3) G.F. Engen, "An Improved Circuit for Implementing the Six-Port Technique of Microwave Measurements", IEEE Trans. on Microwave Theory and Tech., vol. MTT-25, No 12, pp. 1080-1083 (1977).
- (4) G.F. Engen, "Calibrating the Six-Port Automatic Network Analyzer", IEEE Trans. Microwave Theory, vol. MTT-26, No 12, pp. 951-957 (1978).
- (5) Tokyo Oishi, Walter Kohn, "Stroke Vector Representation of the Six-Port Network Analyzer: Calibration and Measurement", IEEE MTT-S, Digest, pp. 503-506 (1985).
- (6) S.H. Li, R.G. Bosisio, "Calibration of Multiport Reflectometers by Means of Four Open/Short Circuits", IEEE Trans. Microwave Theory and Tech., vol. MTT-30, No 7, pp. 2120-2124 (1982).
- (7) J.D. Hunter, P.J. Somlo, "An Explicit Six-Port Calibration Method using Five Standards", IEEE Trans. on Microwave Theory and Technique, vol. MTT-31, No 2, pp. 69-72 (1985).
- (8) S.H. Li, "Automatic Analysis of Multi-Port Microwave Network", Ph.D. thesis, Ecole Polytechnique of Montreal (1982).
- (9) L. Kaliouby, R.G. Bosisio, "A New Real-Time Six-Port ANA Method", IEEE MTT-S International Microwave Symposium Digest, pp. 569-571, San Francisco, 30 mai-2 juin 1984.
- (10) L. Kaliouby, R.G. Bosisio, "A New Method for Six-Port Swept Frequency Automatic Network Analysis", IEEE Trans. on Microwave Theory and Technique, vol. MTT-32, No 12, pp. 1678-1682, (1984).