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NEW EXTENS1ONS OF SIX-PORT THEORY AND PRACI’lCE

Abstract

L. Kaliouby, R.G. Bosisio

Ecole Polytechnique of Montreal

Montr6al, Qu6bec, Canada

This paper presents new extensions of six–port
theory and practice from the following three points

of view: 1) theory: a new relationship between

reflection coefficient and calibration constants is

given, 2) calibration: a n ew simple explicit

six-port calibration solution using three positions

of a sliding short is developed, 3) design: a new

six–port design for continuous r-plane is

introduced.

Introduction

Six-port automatic network analyzers measure

reflection coefficient r by means of four output

power readings of the form: (Fig. 1).

P3= b3 2= aA+bB 2
2= ~QbD 2

(1)
P4= b4

2= ~E+bF 2
(2)

P5= b5
2= ~G+bH 2

(3)

P6= b6 (4)

where a and b represent respectively the reflected

and iucident waves, and A, B,... H are complex

values function of six–port design (1,2,3).

It has been shown that if one of the power

readings has to be proportional to the incident

wave, that is, P4=Klb12 with C=O, then the ideal

six–port junction must have B,/A, F/E, H/G equal in

module with a phase difference of 120° (2). However,

wi th existing standard microwave components, a

135-135-90 configuration is more easily realized (3)

with B/A=~2X90, F’/E=2Z225, H/G=2L315.

Moreover, in practice, experimental measurements

show that the values of A, B,... H diverge from

design objectives, and vary with frequency. Thus ,

for precise measurements of r, it’s necessary to

first calibrate the six–port, that is, to determine

%
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Figure 1: A six-port network analyzer measure

reflection coefficient r=a/b by means o,f four output

power readings P3, P4, P5, P6.

the values of A, B,... H as a function of frequency.

Afterwards, the values of r can be calculated using

the three power ratios P3/f’4, P5/P4, P6/P4 of tht

form.

with K3=A/C, q3=–B/A

K5=E/C, q5=-F/E

K6=G/C, q6=-H/G

q4=-D/C

(5:

This paper presents new extensions of six–port

theory and practice from the following three points

of view:

Six-port theory

In this paper , it is shown th;zt the complex

constants qn and qd represent respectively the

average valu~ of r wh;n

~<lKq12 and~>lKq12.

The averaging is done with respect

difference between signals bm and b~. ‘Th

o the phas{

s propertj

provides an attractive ge~metric;l in erpretatiO1

and gives interesting insight into the six–pori

calibration and measurement process.
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Six-port calibration

The calibration of six–port consists in

determining eleven constants composed of four

complex values:
‘lA’ ‘lc’FJE’ HIGand three realones: lA/C[2, /E/C12, /G/C\ . Var~ous algorithms exist

for such purposes (4,6,7). However, the objective

still remains to obtain the simplest solution,

explicit if possible, using the minimum number of

loads. In this paper, a simple explicit solution for

this prnblem is developed using only three

positions of a sliding short, wi th a phase

difference of 1200. It is shown that, in this case,

the algorithm used to calculate the four compl ex

calibration constants can be made very similar to

the calculation of r for an ideal 120° junction.

Six-port desigg

In experimental and laboratory work, it’s often

required to make precise real–time or swept

frequency measurements for fine tuning purposes or

verification of circuit characteristics within a

given bandwidth. Recently, this has been made

realizable by using a six–port chart that is

calculated from the calibration constants (9,10).

However, with existing six–port design, it’s only

possible to make readings in a distorted (almost

tri dimensional) r plane. In this paper, a new

six–port design is developed such that real–time or

Swept f

convent

rquency measurements can be made in the more

onal r plane, using only power ratio values.

A New Relationship Between Reflection Coefficient
and Cal ibration constants

Let’s first consider a simple case where qv=l ,

q4=j and KV=l.

Figure 2 shows locus of constant module a and

phase P of

~=.xo=g in the r-plane.

Figure 3 shows for a circle with 0=.2,.4,.6,.8, tbe

x and y values of r as a function of b’. It is seen

that the average value of x is 1, and the average

value of y is O, corresponding to the x and y

coordinates of qq. Similarity, for a<l, the average

value of T is (0,1), that is, q4.

More generally speaking, it can be shown that for

any value of qq, q4, KV, the relationship:

1

/

27

r av = %0
(rx, ry) dd (6)

=qq if~<lKq12

=q4 if~>]Kq12

still holds.
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Figure 2: Locus of constant module, cr, of

%=Kti
b4 v r-qd

and constant phase, 0, of bq/b4, in the r plane,

for qn=l, q4=j, Kq=l.
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Figure 3: The x and y coordinates values of r, as a

function of 9, for a circle with a=O.2, 0.4, 0.6,

0.8.
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A Simple Explicit, Six-Port Calibration Solution

Using Three Positions of a Sliding Short

Let’s designate by P33, P35, P36 the power output

P3 when the load is successively three positions of

a sliding short with a phase difference of 1200

difference; (@~=o, 05=120, 06=240) and let’s
designate by P34 the power output P3 when the load

is a matched load. P34 may he calculated from P33,

’35! ’36)

We have then

(7)

The value of (B/A)-l can then be simply

calculated as the intersection of three circles in

the (B/A)-l plane (Fig.4) or as

6

(B/A) -l=
i=l (a.+~. )P7.

i$, .yiP3i

(8)

Similar remark apply for the evaluation of F/E, H/G,

D/C. It’s ““ -only required afterwards to corre

the exact reference pharre, by use of a fixed

or open.

The values of \Apl, /E/c],lG/cl are f

evaluated using equation (5).

Y
(B/Aiblan

t for

short

nally

Figure 4: The four complex calibration constants

can be simply calculated as the intersection of

three circles, with center given by lXO, 1~120,

11240. For example, the value of (B/A)-l can be

calculated as the intersection, in the (B/A)-l

plane, of three circles of radius given by ~P33/f’34,

~p35/p349 ~p36/p34.

A New Six-Port Design for Continuous r-plane Displaj

In order to be able to make readings in the

conventional r–plane using only power ratio values,

the mathematical objective design has to be:

%=rx+
f’4

Ek=ry+
P4

From equation

constant

constant

(5) this relationship implies:

2 2_2mmqC0S(P-P3)) = ~ ~OSP + const.

‘(lJ~4z-2m4c0s(P-P4 )

2_2w5c0s(P–P5)) = m sinp + ConSt’m2tm5

‘(mA~42–2MIU4C0S(q-W4 )

where r = mg~

B/A= m3@3, F/E=m5@5, D/C=m4@4

(9)

(lo)

(11)

(12)

Using these eq”atiorrs, it can be shown that to

satisfy these requirements in the regic,n Irl([, the

optimal values of B/A, D/C, F/E are (Fig. 5).

-B/A=2.5X190, -D/C=10L225, -F/E=2.5xt2t30

In fact, figure 6 shows that in this case, P31P4

and P5/P4 becomes then practically linear function

of rx and r . Thus , the six–port chart, in the

region Irl<l, tecomes then practically a r-plane

(Fig.7).

It becomes then

analyzer user to make

measurements, within

with the system.

extremely easy for a network

real-time or Sw<!pt frequency

a minimum familiarization time

(f
-D/c

Figur, 5: New six–port design with -B/.A=l.5~I9o,

-D/C=10L225, -F/E=2.5i260, that i!s, a 35-3!

configuration.
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Figure 6a): The relationship between power ratio

P3/P4 and rx is practically linear in the horizontal

axis, that is for PO and p=180.

Figure 6b): The relationship between power ratio

F’5/P4 and ry is practically linear in the vertical

axis, that 1s, for ~90 and KJ=270.

J ,g.,
.4 ,, 8

Figure 7: The six–port chart for a six–port

junction characterized by -f3/A=2.5X190,

-D/C=10X225, -F/E=2.5X260 is practically a r plane

for Irl<l.

Experimental results

An experimental set–up has been developed for

the measurement of reflection coefficient using

six-port concept.

The precision of calibration algorithm using

three positions of a sliding short is lVO in module

and 2° in phase.

The frequency where the design is the closest to

the optimum is at 3.4 GHz.

Conclusion

This paper has presented new extensions of

six-port theory and practice from the following

three points of view: 1) theory: a new relationship

between reflection coefficient and calibration

constants has been given, 2) calibration: a new

simple explicit six–port calibration solution using

three positions of a sliding short has been

developed 3) design: a new six-port design for

continuous r–plane display has been introduced.
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